Lecture 16 14.6 Tangent planes
 14.7 Extreme values and saddle points

Jeremiah Southwick

February 27, 2019

Things to note

Upcoming dates:
Quiz 7 today, no quiz on Friday.
Monday: Quiz 8 and WF drop date (see grade calculation sheet on
Blackboard)
Wednesday, March 6: Review
Friday, March 8: Exam 2

Last class

At $(a, b), f$ increases most rapidly in the direction of $\nabla f(a, b)$. ($\theta=0$).

At $(a, b), f$ decreases most rapidly in the opposite direction of $\nabla f(a, b) .(\theta=\pi)$.

At $(a, b), f$ is neither rising nor dropping in the directions orthogonal to $\nabla f(a, b) .(\theta=\pi / 2)$.

14.6 Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
First we need a normal vector $\overrightarrow{\mathbf{n}}$ and a point $P_{0}=(a, b, c)$ in the plane. Then the equation is

$$
\overrightarrow{\mathbf{n}} \cdot\langle x-a, y-b, z-c\rangle=0
$$

Idea: First find some lines tangent to the function.
Start off with tangent lines in the x - and y-directions.

Tangent planes

Question
How do we find the slope of a function $z=f(x, y)$ in the x-direction?

Tangent planes

Question

How do we find the slope of a function $z=f(x, y)$ in the x-direction?

Tangent planes

Question

How do we find the slope of a function $z=f(x, y)$ in the x-direction?

This line is given by $z-f(a, b)=f_{x}(a, b)(x-a)$ or

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle .
$$

Tangent planes

We can do the same thing in the y-direction.

Tangent planes

We can do the same thing in the y-direction.

This line is given by $z-f(a, b)=f_{y}(a, b)(y-b)$ or

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle .
$$

Tangent planes

Question
How do we find a plane that is tangent to a function $z=f(x, y)$?

Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
Two tangent lines:

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle
$$

and

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle .
$$

Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
Two tangent lines:

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle
$$

and

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle .
$$

Point: $P_{0}=(a, b, f(a, b))$

Tangent planes

Question

How do we find a plane that is tangent to a function $z=f(x, y)$?
Two tangent lines:

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 0,1, f_{y}(a, b)\right\rangle
$$

and

$$
\overrightarrow{\mathbf{r}}(t)=\langle a, b, f(a, b)\rangle+t\left\langle 1,0, f_{x}(a, b)\right\rangle .
$$

Point: $P_{0}=(a, b, f(a, b))$
Normal vector: $\overrightarrow{\mathbf{n}}$ is the cross product of the direction vectors of the lines.

Tangent planes

Point: $P_{0}=(a, b, f(a, b))$

$$
\overrightarrow{\mathbf{n}}=
$$

Tangent planes

Point: $P_{0}=(a, b, f(a, b))$

$$
\overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
0 & 1 & f_{y}(a, b) \\
1 & 0 & f_{x}(a, b)
\end{array}\right|=\left\langle f_{x}(a, b), f_{y}(a, b),-1\right\rangle
$$

Tangent planes

Point: $P_{0}=(a, b, f(a, b))$

$$
\overrightarrow{\mathbf{n}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
0 & 1 & f_{y}(a, b) \\
1 & 0 & f_{x}(a, b)
\end{array}\right|=\left\langle f_{x}(a, b), f_{y}(a, b),-1\right\rangle
$$

Then the equation of the plane is $\overrightarrow{\mathbf{n}} \cdot\langle x-a, y-b, z-f(a, b)\rangle=0$ or

$$
f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)-(z-f(a, b))=0
$$

Solving for z, we have

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Tangent plane example

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Example
Find the tangent plane to $z=x \cos (y)-y e^{x}$ at $(\ln (2), 0, \ln (2))$.

Tangent plane example

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

Example
Find the tangent plane to $z=x \cos (y)-y e^{x}$ at $(\ln (2), 0, \ln (2))$.
We have $\nabla f=\left\langle\cos (y)-y e^{x},-x \sin (y)-e^{x}\right\rangle$ and thus the equation is

$$
(x-\ln (2))+(-2)(y-0)-(z-\ln (2))=0
$$

or

$$
z=x-2 y
$$

